Support
Docs
 

    SSE Arithmetic instructions

    ADDPS (parallel) and ADDSS (scalar) add the pair of operands.
    SUBPS (parallel) and SUBSS (scalar) subtract the pair of operands.
    MULPS (parallel) and MULSS (scalar) multiply the pair of operands.
    DIVPS (parallel) and DIVSS (scalar) divides the pair of operands.
    SQRTPS (parallel) and SQRTSS (scalar) return the square root of the source operand to the destination register.
    MAXPS (parallel) and MAXSS (scalar) return the maximum of the pair of operands: DestReg[i] = Max(DestReg[i], SrcReg[i]) 
    MINPS (parallel) and MINSS (scalar) return the minimum of the pair of operands: DestReg[i] = Min(DestReg[i], SrcReg[i])

    ADDSS xmm1, xmm2/m32

    Adds the low single-precision floating-point values from the source operand (second operand) and the destination operand (first operand), and stores the single-precision floating-point result in the destination operand. The source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. The three high-order doublewords of the destination operand remain unchanged.

    DEST[31-0] ← DEST[31-0] + SRC[31-0];
    ADDSS __m128 _mm_add_ss(__m128 a, __m128 b)

    ADDPS xmm1, xmm2/m128

    Performs a SIMD add of the four packed single-precision floating-point values from the source operand (second operand) and the destination operand (first operand), and stores the packed single-precision floating-point results in the destination operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register.

    DEST[31-0] ← DEST[31-0] + SRC[31-0];
    DEST[63-32] ← DEST[63-32] + SRC[63-32];
    DEST[95-64] ← DEST[95-64] + SRC[95-64];
    DEST[127-96] ← DEST[127-96] + SRC[127-96];
    ADDPS __m128 _mm_add_ps(__m128 a, __m128 b)

    SUBSS xmm1, xmm2/m32

    Subtracts the low single-precision floating-point value in the source operand (second operand) from the low single-precision floating-point value in the destination operand (first operand), and stores the single-precision floating-point result in the destination operand. The source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. The three high-order doublewords of the destination operand remain unchanged.

    DEST[31-0] ← DEST[31-0] - SRC[31-0];
    SUBSS __m128 _mm_sub_ss(__m128 a, __m128 b)

    SUBPS xmm1 xmm2/m128

    Performs a SIMD subtract of the four packed single-precision floating-point values in the source operand (second operand) from the four packed single-precision floating-point values in the destination operand (first operand), and stores the packed single-precision floating-point results in the destination operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register.

    DEST[31-0] ← DEST[31-0] − SRC[31-0];
    DEST[63-32] ← DEST[63-32] − SRC[63-32];
    DEST[95-64] ← DEST[95-64] − SRC[95-64];
    DEST[127-96] ← DEST[127-96] − SRC[127-96];
    SUBPS __m128 _mm_sub_ps(__m128 a, __m128 b)

    MULSS xmm1, xmm2/m32

    Multiplies the low single-precision floating-point value from the source operand (second operand) by the low single-precision floating-point value in the destination operand (first operand), and stores the single-precision floating-point result in the destination operand. The source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. The three high-order doublewords of the destination operand remain unchanged.

    DEST[31-0] ← DEST[31-0] * SRC[31-0];
    MULSS __m128 _mm_mul_ss(__m128 a, __m128 b)

    MULPS xmm1, xmm2/m128

    Performs a SIMD multiply of the four packed single-precision floating-point values from the source operand (second operand) and the destination operand (first operand), and stores the packed single-precision floating-point results in the destination operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register.

    DEST[31-0] ← DEST[31-0] * SRC[31-0];
    DEST[63-32] ← DEST[63-32] * SRC[63-32];
    DEST[95-64] ← DEST[95-64] * SRC[95-64];
    DEST[127-96] ← DEST[127-96] * SRC[127-96];
    MULPS __m128 _mm_mul_ps(__m128 a, __m128 b)

    DIVSS xmm1, xmm2/m32

    Divides the low single-precision floating-point value in the destination operand (first operand) by the low single-precision floating-point value in the source operand (second operand), and stores the single-precision floating-point result in the destination operand. The source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. The three high-order doublewords of the destination operand remain unchanged.

    DEST[31-0] ← DEST[31-0] / SRC[31-0];
    DIVSS __m128 _mm_div_ss(__m128 a, __m128 b)

    DIVPS xmm1, xmm2/m128

    Performs a SIMD divide of the two packed single-precision floating-point values in the destination operand (first operand) by the two packed single-precision floating-point values in the source operand (second operand), and stores the packed single-precision floating-point results in the destination operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register.

    DEST[31-0] ← DEST[31-0] / (SRC[31-0]);
    DEST[63-32] ← DEST[63-32] / (SRC[63-32]);
    DEST[95-64] ← DEST[95-64] / (SRC[95-64]);
    DEST[127-96] ← DEST[127-96] / (SRC[127-96]);
    DIVPS __m128 _mm_div_ps(__m128 a, __m128 b)

    SQRTSS xmm1, xmm2/m32

    Computes the square root of the low single-precision floating-point value in the source operand (second operand) and stores the single-precision floating-point result in the destination operand. The source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. The three high-order doublewords of the destination operand remains unchanged.

    DEST[31-0] ← SQRT (SRC[31-0]);
    SQRTSS __m128 _mm_sqrt_ss(__m128 a)

    SQRTPS xmm1, xmm2/m128

    Performs a SIMD computation of the square roots of the four packed single-precision floating point values in the source operand (second operand) stores the packed single-precision floating point results in the destination operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register.

    DEST[31-0] ← SQRT(SRC[31-0]);
    DEST[63-32] ← SQRT(SRC[63-32]);
    DEST[95-64] ← SQRT(SRC[95-64]);
    DEST[127-96] ← SQRT(SRC[127-96]);
    SQRTPS __m128 _mm_sqrt_ps(__m128 a)

    MAXSS xmm1, xmm2/m32

    Compares the low single-precision floating-point values in the destination operand (first operand) and the source operand (second operand), and returns the maximum value to the low doubleword of the destination operand. The source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. The three high-order doublewords of the destination operand remain unchanged.

    DEST[63-0] ← IF ((DEST[31-0] = 0.0) AND (SRC[31-0] = 0.0)) THEN SRC[31-0]
    ELSE IF (DEST[31-0] = SNaN) THEN SRC[31-0];
    ELSE IF SRC[31-0] = SNaN) THEN SRC[31-0];
    ELSE IF (DEST[31-0] > SRC[31-0])
    THEN DEST[31-0]
    ELSE SRC[31-0];
    __m128d _mm_max_ss(__m128d a, __m128d b)

    MAXPS xmm1, xmm2/m128

    Performs a SIMD compare of the packed single-precision floating-point values in the destination operand (first operand) and the source operand (second operand), and returns the maximum value for each pair of values to the destination operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register.

    DEST[31-0] ← IF ((DEST[31-0] = 0.0) AND (SRC[31-0] = 0.0)) THEN SRC[31-0]
    ELSE IF (DEST[31-0] = SNaN) THEN SRC[31-0];
    ELSE IF SRC[31-0] = SNaN) THEN SRC[31-0];
    ELSE IF (DEST[31-0] > SRC[31-0])
    THEN DEST[31-0]
    ELSE SRC[31-0];
    repeat operation for 2nd and 3rd doublewords
    DEST[127-64] ← IF ((DEST[127-96] = 0.0) AND (SRC[127-96] = 0.0))
    THEN SRC[127-96]
    ELSE IF (DEST[127-96] = SNaN) THEN SRC[127-96];
    ELSE IF SRC[127-96] = SNaN) THEN SRC[127-96];
    ELSE IF (DEST[127-96] > SRC[127-96])
    THEN DEST[127-96]
    ELSE SRC[127-96];
    __m128d _mm_max_ps(__m128d a, __m128d b)

    MINSS xmm1, xmm2/m32

    Compares the low single-precision floating-point values in the destination operand (first operand) and the source operand (second operand), and returns the minimum value to the low doubleword of the destination operand. The source operand can be an XMM register or a 32-bit memory location. The destination operand is an XMM register. The three high-order doublewords of the destination operand remain unchanged.

    DEST[63-0] ← IF ((DEST[31-0] = 0.0) AND (SRC[31-0] = 0.0)) THEN SRC[31-0]
    ELSE IF (DEST[31-0] = SNaN) THEN SRC[31-0];
    ELSE IF SRC[31-0] = SNaN) THEN SRC[31-0];
    ELSE IF (DEST[31-0] < SRC[31-0])
    THEN DEST[31-0]
    ELSE SRC[31-0];
    __m128d _mm_min_ss(__m128d a, __m128d b)

    MINPS xmm1, xmm2/m128

    Performs a SIMD compare of the packed single-precision floating-point values in the destination operand (first operand) and the source operand (second operand), and returns the minimum value for each pair of values to the destination operand. The source operand can be an XMM register or a 128-bit memory location. The destination operand is an XMM register.

    DEST[63-0] ← IF ((DEST[31-0] = 0.0) AND (SRC[31-0] = 0.0)) THEN SRC[31-0]
    ELSE IF (DEST[31-0] = SNaN) THEN SRC[31-0];
    ELSE IF SRC[31-0] = SNaN) THEN SRC[31-0];
    ELSE IF (DEST[31-0] > SRC[31-0])
    THEN DEST[31-0]
    ELSE SRC[31-0];
    repeat operation for 2nd and 3rd doublewords
    DEST[127-64] ← IF ((DEST127-96] = 0.0) AND (SRC[127-96] = 0.0))
    THEN SRC[127-96]
    ELSE IF (DEST[127-96] = SNaN) THEN SRC[127-96];
    ELSE IF SRC[127-96] = SNaN) THEN SRC[127-96];
    ELSE IF (DEST[127-96] < SRC[127-96])
    THEN DEST[127-96]
    ELSE SRC[127-96];
    __m128d _mm_min_ps(__m128d a, __m128d b)

     

    << Back to Intel SSE Home Next: Reciprocal instructions >>
Copyright Stefano Tommesani 2000/03 - All trademarks belong to their respective holders