Stefano Tommesani

  • Increase font size
  • Default font size
  • Decrease font size
Home Programming Background subtraction: neural and neuro-fuzzy methods

Background subtraction: neural and neuro-fuzzy methods

Performance map

BenchmarkNeural

Adaptive SOM of Maddalena and Petrosino (2008) paper link

 

Detection of moving objects in video streams is the first relevant step of information extraction in many computer vision applications. Aside from the intrinsic usefulness of being able to segment video streams into moving and background components, detecting moving objects provides a focus of attention for recognition, classification, and activity analysis, making these later steps more efficient. We propose an approach based on self organization through artificial neural networks, widely applied in human image processing systems and more generally in cognitive science. The proposed approach can handle scenes containing moving backgrounds, gradual illumination variations and camouflage, has no bootstrapping limitations, can include into the background model shadows cast by moving objects, and achieves robust detection for different types of videos taken with stationary cameras. We compare our method with other modeling techniques and report experimental results, both in terms of detection accuracy and in terms of processing speed, for color video sequences that represent typical situations critical for video surveillance systems.

 

Fuzzy Adaptive SOM of Maddalena and Petrosino (2010) paper link

 

The detection of moving objects from stationary cameras is usually approached by background subtraction, i.e. by constructing and maintaining an up-to-date model of the background and detecting moving objects as those that deviate from such a model. We adopt a previously proposed approach to background subtraction based on self-organization through artificial neural networks, that has been shown to well cope with several of the well known issues for background maintenance. Here, we propose a spatial coherence variant to such approach to enhance robustness against false detections and formulate a fuzzy model to deal with decision problems typically arising when crisp settings are involved. We show through experimental results and comparisons that higher accuracy values can be reached for color video sequences that represent typical situations critical for moving object detection.


These algorithms are contained in the bgslibrary by Andrews Sobral, that includes over 30 background subtraction algorithms, a common C++ framework for comparing them, and an handy C++/MFC or Java app to see them running on video files or live feed from a webcam.

Return to the list of background subtraction algorithms

Quote this article on your site

To create link towards this article on your website,
copy and paste the text below in your page.




Preview :


Powered by QuoteThis © 2008
Last Updated on Monday, 23 September 2013 17:26  
View Stefano Tommesani's profile on LinkedIn

Latest Articles

Castle on the hill of crappy audio quality 19 March 2017, 01.53 Audio
Castle on the hill of crappy audio quality
As the yearly dynamic range day is close (March 31st), let's have a look at one of the biggest audio massacres of the year, Ed Sheeran's "Castle on the hill". First time I heard the song, I thought my headphones just got
Necessary evil: testing private methods 29 January 2017, 21.41 Testing
Necessary evil: testing private methods
Some might say that testing private methods should be avoided because it means not testing the contract, that is the interface implemented by the class, but the internal implementation of the class itself. Still, not all
I am right and you are wrong 28 December 2016, 14.23 Web
I am right and you are wrong
Have you ever convinced anyone that disagreed with you about a deeply held belief? Better yet, have you changed your mind lately on an important topic after discussing with someone else that did not share your point of
How Commercial Insight changes R&D 06 November 2016, 01.21 Web
How Commercial Insight changes R&D
The CEB's Commercial Insight is based on three pillars: Be credible/relevant – Demonstrate an understanding of the customer’s world, substantiating claims with real-world evidence. Be frame-breaking – Disrupt the
Windows Forms smells funny, but... 07 April 2016, 15.38 Software
Windows Forms smells funny, but...
In the "2016 .NET Community Report" just released by Telerik, the answers to the question "What technology would you choose if building for Windows Desktop?" were as follows: So roughly half of new desktop developments would

Translate