Stefano Tommesani

  • Increase font size
  • Default font size
  • Decrease font size
Home Programming Background subtraction: neural and neuro-fuzzy methods

Background subtraction: neural and neuro-fuzzy methods

Hits

Performance map

BenchmarkNeural

Adaptive SOM of Maddalena and Petrosino (2008) paper link

 

Detection of moving objects in video streams is the first relevant step of information extraction in many computer vision applications. Aside from the intrinsic usefulness of being able to segment video streams into moving and background components, detecting moving objects provides a focus of attention for recognition, classification, and activity analysis, making these later steps more efficient. We propose an approach based on self organization through artificial neural networks, widely applied in human image processing systems and more generally in cognitive science. The proposed approach can handle scenes containing moving backgrounds, gradual illumination variations and camouflage, has no bootstrapping limitations, can include into the background model shadows cast by moving objects, and achieves robust detection for different types of videos taken with stationary cameras. We compare our method with other modeling techniques and report experimental results, both in terms of detection accuracy and in terms of processing speed, for color video sequences that represent typical situations critical for video surveillance systems.

 

Fuzzy Adaptive SOM of Maddalena and Petrosino (2010) paper link

 

The detection of moving objects from stationary cameras is usually approached by background subtraction, i.e. by constructing and maintaining an up-to-date model of the background and detecting moving objects as those that deviate from such a model. We adopt a previously proposed approach to background subtraction based on self-organization through artificial neural networks, that has been shown to well cope with several of the well known issues for background maintenance. Here, we propose a spatial coherence variant to such approach to enhance robustness against false detections and formulate a fuzzy model to deal with decision problems typically arising when crisp settings are involved. We show through experimental results and comparisons that higher accuracy values can be reached for color video sequences that represent typical situations critical for moving object detection.


These algorithms are contained in the bgslibrary by Andrews Sobral, that includes over 30 background subtraction algorithms, a common C++ framework for comparing them, and an handy C++/MFC or Java app to see them running on video files or live feed from a webcam.

Return to the list of background subtraction algorithms

Quote this article on your site

To create link towards this article on your website,
copy and paste the text below in your page.




Preview :


Powered by QuoteThis © 2008
Last Updated on Monday, 23 September 2013 17:26  

Latest Articles

A software to stand out 27 January 2018, 14.35 Web
A software to stand out
Standing out of the pack starts by being visible, and being noticed by the right group of professionals. No matter how good your profile is, it is lost in a sea of similar profiles, so you need to show up and start attracting
Web page scraping, the easy way 07 January 2018, 00.46 Web
Web page scraping, the easy way
There are many ways to extract data elements from web pages, almost all of them prettier and cooler than the method proposed here, but as we are in an hurry, let's get that data quickly, ok? Suppose we have to extract the
Scraping dynamic page content 06 January 2018, 23.57 Web
Scraping dynamic page content
One of the most common roadblocks when scraping the content of web sites is getting the full contents of the page, including JS-generated data elements (probably, the ones you are looking for). So, when using CEFSharp to scrape
Unit-testing file I/O 26 November 2017, 12.09 Testing
Unit-testing file I/O
Two good news: file I/O is unit-testable, and it is surprisingly easy to do. Let's see how it works! A software no-one asked for First, we need a piece of software that deals with files and that has to be unit-tested. The
Fixing Git pull errors in SourceTree 10 April 2017, 01.44 Software
Fixing Git pull errors in SourceTree
If you encounter the following error when pulling a repository in SourceTree: VirtualAlloc pointer is null, Win32 error 487 it is due to to the Cygwin system failing to allocate a 5 MB large chunk of memory for its heap at
View Stefano Tommesani's profile on LinkedIn