Multi-thread

Further multi-thread processing with Delphi

In a previous article named “Easy multi-thread programming Delphi“, the AsyncCalls library was used to process multiple images at the same time. However, the processing of every single image was still strictly serial, even if image processing kernels are quite easy to accelerate spreading the load over multiple threads.

In this article we will see how the OmniThreadLibrary can be used to split a simple image processing kernel across multiple threads.

procedure TProcessedImage.EffectBlackWhite(Bitmap : TBitmap32); var x, y : integer;     Color : TColor32;     Red, Green, Blue : Cardinal;     Gray : Cardinal; begin   Bitmap.BeginUpdate;   try     for y := 0 to Pred(Bitmap.Height) do         for x := 0 to Pred(Bitmap.Width) do             begin             Color := Bitmap.Pixel[x, y];             Red := (Color and $00FF0000) shr 16;             Green := (Color and $0000FF00) shr 8;             Blue := Color and $000000FF;             Gray := (Red * 299 + Green * 587 + Blue * 114) div 1000;             //Io=(0.299Ri + 0.587Gi + 0.114Bi)             Bitmap.Pixel[x, y] := Color32(Gray, Gray, Gray);             end;   except   end;   Bitmap.EndUpdate; end;

This procedure converts a RGB image into a gray-scale image by replicating the luma value into all the RGB channels. The processing of each pixel is independent from other ones, so it can be computed in parallel. Still, allocating a thread for each pixel would generate a huge unnecessary overhead, so it is more efficient to process each line, containing Bitmap.Width pixels, in a separate thread. Moving to a parallel solution is very easy thanks to the OmniThreadLibrary:

  1. include OtlParallel into the uses list
  2. add a Parallel.ForEach().Execute() line that specifies the number of iterations of the loop, in this case the vertical rows of the image to be processed, so the loop counter goes from 0 to Pred(Bitmap.Height) as the loop handled by the y variable in the serial code
  3. move the bulk of the image processing code into a lambda inside the Execute invocation, and replace the variable y with the argument of the lambda called elem
  4. move the variables that work on a single pixel inside the lambda, outside of the parent procedure, or they will be shared across all the threads executing the lambda. If you encounter wrong results that vary at every run, check that all variables used to perform computations are declared in the lambda.
procedure TProcessedImage.EffectBlackWhite(Bitmap : TBitmap32); begin   Bitmap.BeginUpdate;   try     Parallel.ForEach(0, Pred(Bitmap.Height)).Execute(     procedure (const elem: integer)     var x : integer;         Color : TColor32;         Red, Green, Blue : Cardinal;         Gray : Cardinal;     begin       for x := 0 to Pred(Bitmap.Width) do           begin           Color := Bitmap.Pixel[x, elem];           Red := (Color and $00FF0000) shr 16;           Green := (Color and $0000FF00) shr 8;           Blue := Color and $000000FF;           Gray := (Red * 299 + Green * 587 + Blue * 114) div 1000;           //Io=(0.299Ri + 0.587Gi + 0.114Bi)           Bitmap.Pixel[x, elem] := Color32(Gray, Gray, Gray);           end;     end);   except   end;   Bitmap.EndUpdate; end; 

That’s all! I told you this was going to be easy… Thanks to the OmniThreadLibrary, splitting a computational load over multiple CPU cores is now a task that can be accomplished in a matter of minutes.

Even better, we can use OmniThreadLibrary to build DUnit test cases that check for code correctness under multi-threaded usage. The following code fragment tests that adding status updates and queries can be run at the same time on the database backend:

procedure TestTFWDDatabase.TestMultiThread3; const UpdatedUserName : string = 'UpdatedUser';       UpdaterUserName : string = 'UpdaterUser'; var UpdatedUser : TFWDUser;     UpdaterUser : TFWDUser;     CleanupStatusChangeList : TList<TFWDStatusChange>;     StatusChangePtr : TFWDStatusChange; begin   /// create user to be updated   UpdatedUser := TFWDUser.Create;   UpdatedUser.ProtocolId := UpdatedUserName;   ObjectDatabase.AddUser(UpdatedUser);    /// create user that will signal updates   UpdaterUser := TFWDUser.Create;   UpdaterUser.ProtocolId := UpdaterUserName;   ObjectDatabase.AddUser(UpdaterUser);    /// add updates and run queries on update table at the same time   Parallel.ForEach(1, 100).Execute(     procedure (const elem: integer)     var TestStatusUpdate : TFWDStatusUpdate;         StatusChangeList : TList<TFWDStatusChange>;     begin     if (elem and 1) = 0        then begin             /// status update             TestStatusUpdate := TFWDStatusUpdate.Create(UpdaterUserName, PROTOCOL_FACEBOOK);             TestStatusUpdate.AddFriendStatusUpdate(UpdatedUserName, false, elem);             TestStatusUpdate.Process;             TestStatusUpdate.Free;             end        else begin             /// run query             StatusChangeList := ObjectDatabase.GetStatusChangesFromUserId(UpdatedUser.Id);             StatusChangeList.Free;             end;     end   );    CleanupStatusChangeList := ObjectDatabase.GetStatusChangesFromUserId(UpdatedUser.Id);   Check(CleanupStatusChangeList.Count = 50, 'Wrong count of status changes');   Check(UpdaterUser.UpdateCount = 50, 'Wrong count of status updates');   /// additional tests hidden...    /// cleanup   for StatusChangePtr in CleanupStatusChangeList do       ObjectDatabase.EraseStatusChange(StatusChangePtr);   CleanupStatusChangeList.Free;    ObjectDatabase.EraseUser(UpdatedUser);   ObjectDatabase.EraseUser(UpdaterUser); end; 

The Parallel.ForEach runs 100 iterations of the lambda function, that uses the elem parameter to choose which action shall be performed in that invocation, choosing between adding a status update on even iterations and running a query on status tables on odd iterations. This code fragment is a part of the DUnit test suite of the Friend Watchdog server, and together with a large set of the other automated unit tests ensures that the server can support multiple requests from Friend Watchdog clients without getting stuck or corrupting data.

Leave a Reply

Your email address will not be published. Required fields are marked *